Dynamical invariants of categories associated to mapping tori

Yusuf Barış Kartal

Massachusetts Institute of Technology

November 13, 2017

イロン イヨン イヨン 一日

1/40

Motivation

- 2 Construction of the mapping torus categories
- 3 Statement of the main theorem and the idea
- A family of bimodules
- 5 Proof of the main theorem

Let (M, ω) be a symplectic manifold and ϕ be a symplectomorphism. Define the symplectic mapping torus as

$$ar{\mathcal{T}}_{\phi} = oldsymbol{M} imes oldsymbol{S}^1/(x,t,s) \sim (\phi(x),t+1,s)$$

It is a symplectic manifold fibered over T^2 . Assume ϕ is not Hamiltonian. **Question:** How can we distinguish \overline{T}_{ϕ} and $\overline{T}_{id_M} = M \times T^2$?

Answer: Assume *M* is compact and $H^1(M) = 0$. We can try to use an invariant called the Flux group to distinguish them.

Given a compact symplectic manifold X, flux group is a discrete subgroup $\Gamma \subset H^1(X; \mathbb{R})$ which measures the aboundancy of loops/circles in the symplectomorphism group.

Applying this idea informally, $\overline{T}_{id_M} = M \times T^2$ admits circle actions in two independent directions(hence a rank 2-lattice many of them); whereas circle action in one direction is broken for \overline{T}_{ϕ} .

This argument fails for

$$T_{\phi} = M imes (\mathbb{R} imes S^1 \setminus \mathbb{Z} imes 1) / (x, t, s) \sim (\phi(x), t+1, s)$$

The circle action is broken on $T_0 = T^2 \setminus \{*\}$.

- We may try to partially compactify \mathcal{T}_{ϕ}
- Hard to characterize uniquely
- Heuristically partial compactifications correspond to deformations of the Fukaya category
- Hence, we wish to apply the idea of flux to $\mathcal{W}(\mathcal{T}_{\phi})$
- We propose an categorical model for the mapping torus and prove an abstract result instead

Advantage: Applies to manifolds X such that $\mathcal{W}(X) \simeq \mathcal{W}(T_{\phi})$.

Work in progress: Have to relate the abstract categorical mapping tori to $\mathcal{W}(T_{\phi})$.

Let ${\mathcal A}$ be an A_∞ category over ${\mathbb C}$ and ϕ be an $A_\infty\text{-}{\rm autoequivalence}.$ Further assume

- ${\small \textcircled{0}} \hspace{0.1 cm} \mathcal{A} \hspace{0.1 cm} \text{is smooth, i.e. the diagonal bimodule is perfect}$
- **2** \mathcal{A} is proper in each degree and bounded below
- $HH^{i}(\mathcal{A}) = 0$ for i < 0 and $HH^{0}(\mathcal{A}) \cong \mathbb{C}$

Associated to this data we construct a category M_{ϕ} , the **mapping torus** category satisfying the properties 1-3.

Let $\tilde{\mathbb{T}}_0$ denote the Tate curve. It is a chain of \mathbb{P}^1 's defined by gluing $Spec(\mathbb{C}[X_i, Y_{i+1}]/X_iY_{i+1})$

Note the natural right translation automorphism $\mathfrak{tr} \curvearrowright \tilde{\mathfrak{I}}_0$ and the \mathbb{G}_m action. Locally, $z \in \mathbb{G}_m$ acts by $X_i \mapsto z^{-1}X_i, Y_{i+1} \mapsto zY_{i+1}$

We find a dg category $\mathcal{O}(\tilde{\mathbb{T}}_0)_{dg}$ such that

- tw^π(O(T̃₀)_{dg}) is a dg enhancement for D^b(Coh_p(T̃₀)), bounded derived category of coherent sheaves with a support of finite type
- 2) $\mathfrak{tr} = \mathfrak{tr}_*$ acts strictly on $\mathcal{O}(\tilde{\mathfrak{T}}_0)_{dg}$

• The geometric \mathbb{G}_m -action above induces a nice action on $\mathcal{O}(\tilde{\mathbb{T}}_0)_{dg}$ Moreover, $ob(\mathcal{O}(\tilde{\mathbb{T}}_0)_{dg}) = \{\mathcal{O}_{C_i}(-1), \mathcal{O}_{C_i} : i \in \mathbb{Z}\}.$

Consider $\mathcal{O}(\tilde{\mathfrak{T}}_0)_{dg} \otimes \mathcal{A}$, which carries a \mathbb{Z} -action generated by $\mathfrak{tr} \otimes \phi$.

Definition

The mapping torus category is defined as $M_{\phi} := (\mathcal{O}(\tilde{\mathfrak{T}}_0)_{dg} \otimes \mathcal{A}) \# \mathbb{Z}$

Given a dg category \mathcal{B} with a (nice) action of the discrete group G, we can construct a category $\mathcal{B}\#G$ such that

- $ob(\mathcal{B}\#G) = ob(\mathcal{B})$
- ② $(B#G)(b,b') = \bigoplus_{g \in G} B(g.b,b')$. Let $f \in B(g.b,b')$ be denoted by $f \otimes g$

$$(f \otimes g).(f' \otimes g') = fg(f') \otimes gg'$$

Morally, if \mathcal{B} has geometric origin this gives a category associated to quotient by G.

Remark

The \mathbb{G}_m -action on $\mathcal{O}(\tilde{\mathfrak{T}}_0)_{dg}$ induces a \mathbb{G}_m -action on M_{ϕ} .

We are now ready to state the main theorem:

Main theorem

Assume further $HH^1(\mathcal{A}) = HH^2(\mathcal{A}) = 0$. If M_{ϕ} and $M_{1_{\mathcal{A}}}$ are Morita equivalent then $\phi \simeq 1_{\mathcal{A}}$.

Given two A_{∞} -categories \mathcal{B}_1 and \mathcal{B}_2 , we call them Morita equivalent if there is a \mathcal{B}_1 - \mathcal{B}_2 -bimodule E and a \mathcal{B}_2 - \mathcal{B}_1 -bimodule E' such that $E \bigotimes_{\mathcal{B}_2}^{L} E' \simeq \mathcal{B}_1$ and $E' \bigotimes_{\mathcal{B}_1}^{L} E \simeq \mathcal{B}_2$. By Toen's work they are Morita equivalent if and only if $tw^{\pi}(\mathcal{B}_1)$ and $tw^{\pi}(\mathcal{B}_2)$ are A_{∞} -equivalent.

Given a variety X and automorphism $\phi_0 \curvearrowright X$ construct

$$egin{aligned} M^{\mathcal{A}\mathcal{G}}_{\phi_0} &= ilde{\mathbb{J}}_0 imes X/(t,x) \sim (\mathfrak{tr}(t),\phi_0(x)) \cong \ &\mathbb{P}^1 imes X/(0,x) \sim (\infty,\phi_0(x)) \end{aligned}$$

Remark

We expect
$$D^b(Coh(M^{AG}_{\phi_0})) \simeq H^0(tw^{\pi}(M_{\phi}))$$
 for $\phi = (\phi_0)_*$.

<ロト < 回 ト < 巨 ト < 巨 ト ミ の Q C 13 / 40 Before we sketch the proof of the main theorem let us give the basic idea on $M_{\phi_0}^{AG}$. $M_{\phi_0}^{AG}$ is fibered over \mathcal{T}_0 , the nodal elliptic curve and it has a natural deformation over $Spf(R) = Spf(\mathbb{C}[[q]])$

Here \mathcal{T}_R denotes the Tate family, a natural smoothing of the nodal elliptic curve. One way to define the deformation $M_{\phi_0}^{AG,R}$ is to use the formal smoothing $\tilde{\mathcal{T}}_R$ of $\tilde{\mathcal{T}}_0$ locally given by $Spf(\mathbb{C}[X_i, Y_{i+1}][[q]]/(X_iY_{i+1}-q))$

Then $M^{AG}_{\phi_0} := \tilde{\mathbb{T}}_R imes X/(t,x) \sim (\mathfrak{tr}(t),\phi_0(x))$

Pass to generic fiber M^{AG,K}_{φ0} of M^{AG,R}_{φ0} to obtain an analytic mapping torus over K = C((q))

<ロ> <四> <四> <四> <三</p>

16/40

- There is an action of the generic fiber $\mathfrak{T}_{\mathcal{K}}$ of $\mathfrak{T}_{\mathcal{R}}$ on $M_{1_{\mathcal{K}}}^{\mathcal{AG},\mathcal{K}} = \mathfrak{T}_{\mathcal{K}} \times X$ (in a specific direction)
- This action is broken on $M_{\phi_0}^{AG,K}$ unless $\phi_0 = 1_X$

Notice the same idea can be phrased in terms of $\mathbb{G}_{m,K}^{an}$ -action on $M_{\phi_0}^{AG,K}$ which restricts to fiberwise action of ϕ_0 at t = q. This is essentially a flow line along a given direction. We will apply a categorical version of this idea, but instead of using generic fibers we will prove results up to q-torsion. Instead of flow lines, we will use family of "endo-functors" or bimodules parametrized by a formal scheme whose generic fiber gives $\mathbb{G}_{m,K}^{an}$, namely $\tilde{\mathbb{T}}_{R}$.

- Need a categorical analogue of $M^{AG,R}_{\phi_0}$
- Deform $\mathcal{O}(\tilde{\mathbb{T}}_0)_{dg}$ to obtain a curved dg category $\mathcal{O}(\tilde{\mathbb{T}}_R)_{cdg}$ over $R = \mathbb{C}[[q]]$ with action of \mathfrak{tt}
- Let $M^R_\phi := (\mathcal{O}(ilde{\mathbb{T}}_R)_{\mathit{cdg}} \otimes \mathcal{A}) \# \mathbb{Z}$

- We construct a family of endo-functors/bimodules of M^R_φ parametrized by Spf(ℂ[u, t][[q]]/(ut q)) ↔ T̃_R
- First define it for $\mathcal{O}(\tilde{\mathbb{T}}_R)_{cdg}$ by utilizing a "graph" in $\mathcal{G}_R \subset \tilde{\mathbb{T}}_R \times \tilde{\mathbb{T}}_R \times Spf(A_R)$
- In local coordinates, \mathcal{G}_R is given by

$$tY_{i+1} = Y_{i+1}', tX_i' = X_i, Y_{i+1}X_i' = u$$
 or

$$Y_{i+1} = uY'_i, X'_{i-1} = uX_i, Y'_iX_i = t$$

• This graph naturally extends to $\tilde{\mathbb{T}}_R \times \tilde{\mathbb{T}}_R \times \tilde{\mathbb{T}}_R$ and in the generic fiber we expect the graph of $\mathbb{G}_{m,K}^{an} \times \mathbb{G}_{m,K}^{an} \to \mathbb{G}_{m,K}^{an}$ sending $(z_1, z_2) \mapsto z_1^{-1} z_2$

A picture of $\mathcal{G}_R|_{q=0}$

Imagine the part of $\mathcal{G}_R|_{q=0}$ on *t*-axis as degeneration of the action and the part on the *u*-axis as the degeneration of the inverse action composed with backwards translation.

 $|\mathcal{G}_R|_{t=1} = \Delta_{\tilde{\mathbb{T}}_R}, \mathcal{G}_R|_{u=1} = graph(\mathfrak{tr}^{-1})$

- First define an A_R -valued bimodule on $\mathcal{O}(\tilde{\mathfrak{I}}_R)_{cdg}$ by " $(\mathfrak{F}, \mathfrak{F}') \mapsto hom_{\tilde{\mathfrak{I}}_R \times \tilde{\mathfrak{I}}_R}(q^*\mathfrak{F}, p^*\mathfrak{F}' \otimes \mathcal{G}_R)$ "
- Then descent to $M^R_\phi = (\mathcal{O}(ilde{ extsf{T}}_R)_{cdg}\otimes\mathcal{A}) \# \mathbb{Z}$

We obtain an A_R -valued bimodule \mathcal{G}_R ; hence, a module over $M_{\phi}^R \otimes (M_{\phi}^R)^{op} \otimes A_R$.

We prove \mathcal{G}_R is a family of M_{ϕ}^R -bimodules(parametrized by $Spf(A_R)$) satisfying

- $\mathfrak{G}_R|_{q=0}$ can be represented by a twisted complex over $M_\phi \otimes M_\phi^{op} \otimes \mathbb{C}[u, t]/(ut).$
- **2** The restriction $\mathcal{G}_R|_{t=1}$ is isomorphic to diagonal bimodule of M_{ϕ}^R
- S_R follows the class 1 ⊗ $\gamma_{\phi}^{R} \in HH^{1}(M_{\phi}^{R} \otimes M_{\phi}^{R,op}, M_{\phi}^{R} \otimes M_{\phi}^{R,op})$ along the direction $t\partial_{t} u\partial_{u}$

Here γ_{ϕ}^{R} is a distinguished class in $HH^{1}(M_{\phi}^{R}, M_{\phi}^{R})$. We will explain the terms "family" and "follows". We show the properties 1-3 uniquely characterize the family \mathcal{G}_{R} up to *q*-torsion.

Given an A_{∞} -category \mathcal{B} and a affine variety/formal scheme S, we can define **a family of (bi)modules parametrized by** S to be an (A_{∞}) -(bi)module \mathfrak{M} over \mathcal{B} which carries the structure of a (graded)free $\mathcal{O}(S)$ -module such that the \mathcal{B} -(bi)module maps are $\mathcal{O}(S)$ -linear. Define a morphism of families to be an A_{∞} \mathcal{B} -(bi)module homomorphism that is $\mathcal{O}(S)$ -linear.

We wish to measure the "rate of change" of the family along a derivation D_S on $\mathcal{O}(S)$.

For simplicity consider only families of right modules. Let \mathfrak{M} be a family of right modules. Define **a pre-connection** $\not D$ **along** D_S **on** \mathfrak{M} to be a collection of maps

$$onumber egin{aligned}
&\mathcal{D}^1: \mathfrak{M}(b_0) o \mathfrak{M}(b_0) \\
&\mathcal{D}^2: \mathfrak{M}(b_1) \otimes \mathcal{B}(b_0, b_1) o \mathfrak{M}(b_0)[-1] \\
&\cdots \end{aligned}$$

such that \mathcal{D}^i is $\mathcal{O}(S)$ -linear for $i \ge 2$ and \mathcal{D}^1 satisfies the Leibniz rule with respect to D_S , i.e. $\mathcal{D}^1(f_S) = f \mathcal{D}^1(s) + D_S(f)s$.

 \mathcal{D} can be thought as an A_{∞} -pre-module map and its differential, denoted by $def(\mathcal{D})$ gives a class

where $\mathcal{B}_{\mathcal{O}(S)}^{mod}$ is the category of families of right \mathcal{B} -modules parametrized by S. In particular, it is closed and $\mathcal{O}(S)$ -linear and the cohomology class $[def(\mathcal{P})]$ is independent of the choice of pre-connection \mathcal{P} . Denote it by $Def(\mathfrak{M})$.

Let $\gamma \in CC^1(\mathcal{B}, \mathcal{B})$. It induces an endomorphism of degree 1 on every \mathcal{B} -module and in particular a cochain

$$\gamma_{\mathfrak{M}}^{\textit{mod},0} \in \mathit{hom}^{1}_{\mathcal{B}^{\textit{mod}}_{\mathcal{O}(S)}}(\mathfrak{M},\mathfrak{M})$$

If γ is closed and $[\gamma_{\mathfrak{M}}^{mod,0}] = Def(\mathfrak{M})$ we say \mathfrak{M} follows γ .

Let $\mathcal{O}(S) = A_R := \mathbb{C}[u, t][[q]]/(ut - q)$ and $D_{A_R} := t\partial_t - u\partial_u$. This derivation can be seen as the infinitesimal action of $z\partial_z \in Lie(\mathbb{G}_m)$, where $z \in \mathbb{G}_m$ acts by $t \mapsto zt, u \mapsto z^{-1}u$.

Assume there is a (nice) \mathbb{G}_m -action on \mathcal{B} . Then again $z\partial_z \in Lie(\mathbb{G}_m)$ induces a class $(z\partial_z)^{\#} \in HH^1(\mathcal{B},\mathcal{B})$, the infinitesimal action.

Lemma

Assume a family \mathfrak{M} carries a (nice) \mathbb{G}_m -equivariant structure. Then \mathfrak{M} admits a natural pre-connection and follows the class $[(z\partial_z)^{\#}]$.

The graph $\mathcal{G}_R \subset \tilde{\mathfrak{T}}_R \times \tilde{\mathfrak{T}}_R \times Spf(A_R)$, which is locally given by

$$tY_{i+1} = Y_{i+1}', tX_i' = X_i, Y_{i+1}X_i' = u$$
 or

$$Y_{i+1} = uY'_i, X'_{i-1} = uX_i, Y'_iX_i = t$$

is \mathbb{G}_m -invariant, where \mathbb{G}_m acts by $z: t \mapsto zt, u \mapsto z^{-1}u$ and $z: X'_i \mapsto z^{-1}X'_i, Y'_{i+1} \mapsto zY'_{i+1}$ (i.e. trivially in the first component and as before in the second and third components). Let $\gamma_{\phi}^R = (z\partial_z)^{\#}$:

28 / 40

Corollary

 \mathfrak{G}_{R} follows the class $1 \otimes \gamma_{\phi}^{R}$.

Proposition

Let \mathfrak{G}'_R be another family of bimodules satisfying 1-3. Then, there exists morphisms $f: \mathfrak{G}_R \to \mathfrak{G}'_R$ and $g: \mathfrak{G}'_R \to \mathfrak{G}_R$ in the category $H^0((M^R_{\phi})^{bimod}_{A_R})$ - the homotopy category of families of bimodules- such that $f \circ g = q^N \mathbf{1}_{\mathfrak{G}'_R}, g \circ f = q^N \mathbf{1}_{\mathfrak{G}_R}$ for some N.

Hence, the family \mathcal{G}_R is characterized by 1-3 up to q-torsion.

Consider the chain complex $hom_{(M_{\phi}^{R})_{A_{R}}^{bimod}}(\mathcal{G}_{R}, \mathcal{G}_{R}') = hom(\mathcal{G}_{R}, \mathcal{G}_{R}')$. It is a complex of flat A_{R} -modules and its cohomology is finitely generated over A_{R} in each degree(thanks to Property 1). This complex carries a connection along $D_{A_{R}}$ in each degree given by

$$"\not\!\!\!D_{\mathfrak{G}_R'} \circ (\cdot) - (\cdot) \circ \not\!\!\!D_{\mathfrak{G}_R}"$$

Call such a collection of connections a pre-connection on the complex and denote it by D.

The class of $at(\mathcal{D}) := d \circ \mathcal{D} - \mathcal{D} \circ d$ is given by

$$def(
otin_{\mathfrak{G}_{R}}) \circ (\cdot) - (\cdot) \circ def(
otin_{\mathfrak{G}_{R}})$$

By Assumption 2 on families, $def(\mathcal{D}_{\mathcal{G}_R})$, resp. $def(\mathcal{D}_{\mathcal{G}'_R})$ is cohomologous to $\gamma_{\mathcal{G}_R}^{mod,0}$, resp. $\gamma_{\mathcal{G}'_R}^{mod,0}$ (where $\gamma = 1 \otimes \gamma_{\phi}^R$); hence

But this is null-homotopic, where the homotopy is given by a natural element $\gamma^{mod,1}$: $hom^0(\mathcal{G}_R,\mathcal{G}'_R) \to hom^0(\mathcal{G}_R,\mathcal{G}'_R)$.

Let C^* be a complex of A_R -modules and endow each C^i with a connection along D_{A_R} . Let \mathcal{P} denote this pre-connection. As before, $at(\mathcal{P}) := d(\mathcal{P}) = d \circ \mathcal{P} - \mathcal{P} \circ d$.

Lemma

Assume $at(\mathcal{D}) = d(h) = d \circ h - h \circ d$ for $h \in hom^0(C^*, C^*)$. Then, h can be used to correct \mathcal{D} so that \mathcal{D} becomes a chain map.

In particular, $hom(\mathfrak{G}_R, \mathfrak{G}'_R)$ is a complex of A_R -modules with connections and the collection of connections form a chain map.

Corollary

 $Hom(\mathfrak{G}_R,\mathfrak{G}'_R) = H^0(hom(\mathfrak{G}_R,\mathfrak{G}'_R))$ is a finitely generated A_R -module with a connection.

Remark

The special choice $\gamma^{mod,1}$ of null-homotopy makes sure that compositions such as

$$\mathit{Hom}({\mathbb{G}}'_{\!R},{\mathbb{G}}_{\!R})\otimes_{A_{\!R}}\mathit{Hom}({\mathbb{G}}_{\!R},{\mathbb{G}}'_{\!R}) o \mathit{Hom}({\mathbb{G}}_{\!R},{\mathbb{G}}_{\!R})$$

are also compatible with the induced connections.

Before proceeding the proof of uniqueness, let us make a remark about $Hom(\mathcal{G}_R, \mathcal{G}'_R)|_{t=1}$. As expected, it is isomorphic to $Hom(\mathcal{G}_R|_{t=1}, \mathcal{G}'_R|_{t=1})$ but this relies on the existence of connection on the complex $hom(\mathcal{G}_R, \mathcal{G}'_R)$.

Lemma

 $HH^0(M^R_\phi, M^R_\phi) \cong R.$

Corollary

 $\textit{Hom}(\mathfrak{G}_{R},\mathfrak{G}_{R}')|_{t=1}=\textit{Hom}(\mathfrak{G}_{R},\mathfrak{G}_{R}')/(t-1)\textit{Hom}(\mathfrak{G}_{R},\mathfrak{G}_{R}')\cong R.$

The rest of the proof of uniqueness depends on commutative algebra of modules over $A_R = \mathbb{C}[u, t][[q]]/(ut - q)$.

Lemma

Let M be a finitely generated A_R -module which carries a connection D_M along D_{A_R} . Assume $M|_{t=1} = M/(t-1)M$ is q-torsion over $A_R/(t-1)A_R = R$. Then M is q-torsion.

Lemma

Let M be a finitely generated A_R -module which carries a connection D_M along D_{A_R} . Then, M is free up to q-torsion.

Corollary

 $Hom(\mathcal{G}_R, \mathcal{G}'_R)$ is isomorphic to $A_R = \mathbb{C}[u, t][[q]]/(ut - q)$ up to q-torsion.

Consider

$Hom(\mathfrak{G}'_R,\mathfrak{G}_R)\otimes_{A_R} Hom(\mathfrak{G}_R,\mathfrak{G}'_R) \to Hom(\mathfrak{G}_R,\mathfrak{G}_R)$

All the modules involved carry connections and $Hom(\mathcal{G}'_R, \mathcal{G}_R)$ etc. are isomorphic to A_R up to q-torsion. Up to q-torsion it is equivalent to

$$A_R \otimes_{A_R} A_R \to A_R$$

and thus we can lift $q^N 1_{\mathcal{G}_R}$ for some N. Same in the other direction.

Assume M_{ϕ} and $M_{1_{\mathcal{A}}}$ are Morita equivalent.

Claim

 M_{ϕ}^{R} is Morita equivalent to $\psi_{q}^{*}M_{1_{A}}^{R}$ where ψ_{q} is a transformation of R.

This holds since the only deformation of M_{ϕ} that is non-trivial in the first order is M_{ϕ}^{R} . For simplicity assume $\psi_{q} = 1_{R}$ and M_{ϕ}^{R} is Morita equivalent to $M_{1_{A}}^{R}$.

Claim

 $HH^{1}(M_{\phi}^{R}, M_{\phi}^{R}) \cong HH^{1}(M_{1_{\mathcal{A}}}^{R}, M_{1_{\mathcal{A}}}^{R}) \cong R^{2}$ and the Morita equivalence can be modified so that the natural isomorphism carries γ_{ϕ}^{R} to $\gamma_{1_{\mathcal{A}}}^{R}$.

 $M_{1_{\mathcal{A}}}^R \simeq \mathcal{A} \otimes M_{1_{\mathbb{C}}}^R$ and $M_{1_{\mathbb{C}}}$ is a model for $D^bCoh(\mathfrak{T}_0) \simeq D^{\pi}\mathcal{W}(T_0)$ where \mathfrak{T}_0 is the nodal elliptic curve and T_0 is the punctured torus. Hence, it has sufficient symmetries to modify the Morita equivalence.

Remark

Heuristically, $HH^1(\mathcal{B}, \mathcal{B})$ can be thought as the Lie algebra of $Auteq(tw^{\pi}(\mathcal{B}))$. In our situation we have a natural copy of \mathbb{Z}^2 inside $HH^1(\mathcal{B}, \mathcal{B})$ - the coroots- and the classes above fall into these discrete subgroups.

The Morita equivalence gives a correspondence between families of bimodules parametrized by $Spf(A_R)$. Moreover, the family $(\mathcal{G}_R)_{1_A}$ corresponds to still satisfies 1-3. Hence, it is the same as $(\mathcal{G}_R)_{\phi}$ up to *q*-torsion.

Remark

 $(\mathcal{G}_R)_{1_{\mathcal{A}}}|_{u=1}$ is isomorphic to diagonal and $(\mathcal{G}_R)_{\phi}|_{u=1}$ is isomorphic to "fiberwise ϕ ".

Fiberwise ϕ is an auto-equivalence of M_{ϕ}^{R} that is given by the descent of $\mathfrak{tr}^{-1} \otimes 1_{\mathcal{A}}$ or $1_{\mathcal{O}(\tilde{\mathbb{T}}_{R})_{cdg}} \otimes \phi$ on $\mathcal{O}(\tilde{\mathbb{T}}_{R})_{cdg}$. This implies fiberwise ϕ is the same as $1_{\mathcal{A}}$ up to *q*-torsion.

Pick a smooth *R*-point *p* on the deformation of nodal curve. Any $a \in ob(\mathcal{A})$ we have an unobstructed object " $\mathcal{O}_p \otimes a$ " over \mathcal{M}_{ϕ}^R and a subcategory $\{\mathcal{O}_p\} \otimes \mathcal{A}$. Fiberwise ϕ induces $1 \otimes \phi$ on $\{\mathcal{O}_p\} \otimes \mathcal{A}$ and it is the same as the diagonal bimodule up to *q*-torsion. Hence, after inverting *q*, they are the same and this easily implies $\phi \simeq 1_{\mathcal{A}}$.