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Symplectic mapping torus

Let (M, ω) be a symplectic manifold and φ be a symplectomorphism.
Define the symplectic mapping torus as

T̄φ = M × R× S1/(x , t, s) ∼ (φ(x), t + 1, s)

It is a symplectic manifold fibered over T 2. Assume φ is not Hamiltonian.
Question: How can we distinguish T̄φ and T̄idM = M × T 2?

Answer: Assume M is compact and H1(M) = 0. We can try to use an
invariant called the Flux group to distinguish them.
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Flux

Given a compact symplectic manifold X , flux group is a discrete subgroup
Γ ⊂ H1(X ;R) which measures the aboundancy of loops/circles in the
symplectomorphism group.

Applying this idea informally, T̄idM = M × T 2 admits circle actions in two
independent directions(hence a rank 2-lattice many of them); whereas
circle action in one direction is broken for T̄φ.
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This argument fails for

Tφ = M × (R× S1 \ Z× 1)/(x , t, s) ∼ (φ(x), t + 1, s)

The circle action is broken on T0 = T 2 \ {∗}.
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How to apply flux in this case?

We may try to partially compactify Tφ

Hard to characterize uniquely

Heuristically partial compactifications correspond to deformations of
the Fukaya category

Hence, we wish to apply the idea of flux to W(Tφ)

We propose an categorical model for the mapping torus and prove an
abstract result instead

Advantage: Applies to manifolds X such that W(X ) ' W(Tφ).

Work in progress: Have to relate the abstract categorical mapping tori to
W(Tφ).

6 / 40



Mapping torus categories

Let A be an A∞ category over C and φ be an A∞-autoequivalence.
Further assume

1 A is smooth, i.e. the diagonal bimodule is perfect

2 A is proper in each degree and bounded below

3 HH i (A) = 0 for i < 0 and HH0(A) ∼= C
Associated to this data we construct a category Mφ, the mapping torus
category satisfying the properties 1-3.
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Sketch of the construction

Let T̃0 denote the Tate curve. It is a chain of P1’s defined by gluing
Spec(C[Xi ,Yi+1]/XiYi+1)

Note the natural right translation automorphism tr y T̃0 and the Gm

action. Locally, z ∈ Gm acts by Xi 7→ z−1Xi ,Yi+1 7→ zYi+1
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We find a dg category O(T̃0)dg such that

1 twπ(O(T̃0)dg ) is a dg enhancement for Db(Cohp(T̃0)), bounded
derived category of coherent sheaves with a support of finite type

2 tr = tr∗ acts strictly on O(T̃0)dg
3 The geometric Gm-action above induces a nice action on O(T̃0)dg

Moreover, ob(O(T̃0)dg ) = {OCi
(−1),OCi

: i ∈ Z}.

Consider O(T̃0)dg ⊗A, which carries a Z-action generated by tr⊗ φ.

Definition

The mapping torus category is defined as Mφ := (O(T̃0)dg ⊗A)#Z
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Reminder on smash products

Given a dg category B with a (nice) action of the discrete group G , we
can construct a category B#G such that

1 ob(B#G ) = ob(B)

2 (B#G )(b, b′) =
⊕

g∈G B(g .b, b′). Let f ∈ B(g .b, b′) be denoted by
f ⊗ g

3 (f ⊗ g).(f ′ ⊗ g ′) = fg(f ′)⊗ gg ′

Morally, if B has geometric origin this gives a category associated to
quotient by G .

Remark

The Gm-action on O(T̃0)dg induces a Gm-action on Mφ.
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Statement of the main theorem

We are now ready to state the main theorem:

Main theorem

Assume further HH1(A) = HH2(A) = 0. If Mφ and M1A are Morita
equivalent then φ ' 1A.
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Reminder on Morita equivalences

Given two A∞-categories B1 and B2, we call them Morita equivalent if
there is a B1-B2-bimodule E and a B2-B1-bimodule E ′ such that

E
L
⊗B2 E ′ ' B1 and E ′

L
⊗B1 E ' B2. By Toen’s work they are Morita

equivalent if and only if twπ(B1) and twπ(B2) are A∞-equivalent.
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Algebro-geometric analogue

Given a variety X and automorphism φ0 y X construct

MAG
φ0

= T̃0 × X/(t, x) ∼ (tr(t), φ0(x)) ∼=
P1 × X/(0, x) ∼ (∞, φ0(x))

Remark

We expect Db(Coh(MAG
φ0

)) ' H0(twπ(Mφ)) for φ = (φ0)∗.
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Before we sketch the proof of the main theorem let us give the basic idea
on MAG

φ0
. MAG

φ0
is fibered over T0, the nodal elliptic curve and it has a

natural deformation over Spf (R) = Spf (C[[q]])
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Here TR denotes the Tate family, a natural smoothing of the nodal elliptic
curve. One way to define the deformation MAG ,R

φ0
is to use the formal

smoothing T̃R of T̃0 locally given by Spf (C[Xi ,Yi+1][[q]]/(XiYi+1 − q))

Then MAG
φ0

:= T̃R × X/(t, x) ∼ (tr(t), φ0(x))
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Geometric idea

1 Pass to generic fiber MAG ,K
φ0

of MAG ,R
φ0

to obtain an analytic mapping
torus over K = C((q))

2 There is an action of the generic fiber TK of TR on
MAG ,K

1X
= TK × X (in a specific direction)

3 This action is broken on MAG ,K
φ0

unless φ0 = 1X
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Notice the same idea can be phrased in terms of Gan
m,K -action on MAG ,K

φ0
which restricts to fiberwise action of φ0 at t = q. This is essentially a flow
line along a given direction. We will apply a categorical version of this
idea, but instead of using generic fibers we will prove results up to
q-torsion. Instead of flow lines, we will use family of “endo-functors” or
bimodules parametrized by a formal scheme whose generic fiber gives
Gan

m,K , namely T̃R .
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Need a categorical analogue of MAG ,R
φ0

Deform O(T̃0)dg to obtain a curved dg category O(T̃R)cdg over
R = C[[q]] with action of tr

Let MR
φ := (O(T̃R)cdg ⊗A)#Z
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We construct a family of endo-functors/bimodules of MR
φ

parametrized by Spf (C[u, t][[q]]/(ut − q)) ↪→ T̃R

First define it for O(T̃R)cdg by utilizing a “graph” in
GR ⊂ T̃R × T̃R × Spf (AR)

In local coordinates, GR is given by

tYi+1 = Y ′i+1, tX
′
i = Xi ,Yi+1X

′
i = u or

Yi+1 = uY ′i ,X
′
i−1 = uXi ,Y

′
i Xi = t

This graph naturally extends to T̃R × T̃R × T̃R and in the generic fiber
we expect the graph of Gan

m,K ×Gan
m,K → Gan

m,K sending

(z1, z2) 7→ z−11 z2
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A picture of GR |q=0

Imagine the part of GR |q=0 on t-axis as degeneration of the action and the
part on the u-axis as the degeneration of the inverse action composed with
backwards translation.

GR |t=1 = ∆
T̃R

,GR |u=1 = graph(tr−1)
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The family of bimodules on MR
φ

First define an AR -valued bimodule on O(T̃R)cdg by
“(F,F′) 7→ hom

T̃R×T̃R (q∗F, p∗F′ ⊗ GR)”

Then descent to MR
φ = (O(T̃R)cdg ⊗A)#Z

We obtain an AR -valued bimodule GR ; hence, a module over
MR
φ ⊗ (MR

φ )op ⊗ AR .
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We prove GR is a family of MR
φ -bimodules(parametrized by Spf (AR))

satisfying

1 GR |q=0 can be represented by a twisted complex over
Mφ ⊗Mop

φ ⊗ C[u, t]/(ut).

2 The restriction GR |t=1 is isomorphic to diagonal bimodule of MR
φ

3 GR follows the class 1⊗ γRφ ∈ HH1(MR
φ ⊗MR,op

φ ,MR
φ ⊗MR,op

φ ) along
the direction t∂t − u∂u

Here γRφ is a distinguished class in HH1(MR
φ ,M

R
φ ). We will explain the

terms “family” and “follows”. We show the properties 1-3 uniquely
characterize the family GR up to q-torsion.
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Briefly families of (bi)modules

Given an A∞-category B and a affine variety/formal scheme S , we can
define a family of (bi)modules parametrized by S to be an
(A∞)-(bi)module M over B which carries the structure of a (graded)free
O(S)-module such that the B-(bi)module maps are O(S)-linear. Define a
morphism of families to be an A∞ B-(bi)module homomorphism that is
O(S)-linear.
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We wish to measure the “rate of change” of the family along a derivation
DS on O(S).

For simplicity consider only families of right modules. Let M be a family
of right modules. Define a pre-connection D/ along DS on M to be a
collection of maps

D/1 :M(b0)→M(b0)

D/2 :M(b1)⊗ B(b0, b1)→M(b0)[−1]

. . .

such that D/ i is O(S)-linear for i ≥ 2 and D/1 satisfies the Leibniz rule with
respect to DS , i.e. D/1(fs) = fD/1(s) + DS(f )s.
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D/ can be thought as an A∞-pre-module map and its differential, denoted
by def (D/) gives a class

def (D/) ∈ hom1
Bmod
O(S)

(M,M)

where Bmod
O(S) is the category of families of right B-modules parametrized by

S . In particular, it is closed and O(S)-linear and the cohomology class
[def (D/)] is independent of the choice of pre-connection D/ . Denote it by
Def (M).
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Let γ ∈ CC 1(B,B). It induces an endomorphism of degree 1 on every
B-module and in particular a cochain

γmod ,0
M ∈ hom1

Bmod
O(S)

(M,M)

If γ is closed and [γmod ,0
M ] = Def (M) we say M follows γ.
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Let O(S) = AR := C[u, t][[q]]/(ut − q) and DAR
:= t∂t − u∂u. This

derivation can be seen as the infinitesimal action of z∂z ∈ Lie(Gm), where
z ∈ Gm acts by t 7→ zt, u 7→ z−1u.

Assume there is a (nice) Gm-action on B. Then again z∂z ∈ Lie(Gm)
induces a class (z∂z)# ∈ HH1(B,B), the infinitesimal action.

Lemma

Assume a family M carries a (nice) Gm-equivariant structure. Then M
admits a natural pre-connection and follows the class [(z∂z)#].
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The graph GR ⊂ T̃R × T̃R × Spf (AR), which is locally given by

tYi+1 = Y ′i+1, tX
′
i = Xi ,Yi+1X

′
i = u or

Yi+1 = uY ′i ,X
′
i−1 = uXi ,Y

′
i Xi = t

is Gm-invariant, where Gm acts by z : t 7→ zt, u 7→ z−1u and
z : X ′i 7→ z−1X ′i ,Y

′
i+1 7→ zY ′i+1(i.e. trivially in the first component and as

before in the second and third components).
Let γRφ = (z∂z)#:

Corollary

GR follows the class 1⊗ γRφ .
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Uniqueness of the family

Proposition

Let G′R be another family of bimodules satisfying 1-3. Then, there exists
morphisms f : GR → G′R and g : G′R → GR in the category
H0((MR

φ )bimod
AR

)- the homotopy category of families of bimodules- such

that f ◦ g = qN1G′
R
, g ◦ f = qN1GR

for some N.

Hence, the family GR is characterized by 1-3 up to q-torsion.
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Proof of the uniqueness

Consider the chain complex hom·
(MR

φ )bimod
AR

(GR ,G
′
R) = hom·(GR ,G

′
R). It is a

complex of flat AR -modules and its cohomology is finitely generated over
AR in each degree(thanks to Property 1). This complex carries a
connection along DAR

in each degree given by

“D/G′
R
◦ (·)− (·) ◦ D/GR

”

Call such a collection of connections a pre-connection on the complex and
denote it by D/ .
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The class of at(D/) := d ◦ D/ − D/ ◦ d is given by

def (D/G′
R

) ◦ (·)− (·) ◦ def (D/GR
)

By Assumption 2 on families, def (D/GR
), resp. def (D/G′

R
) is cohomologous

to γmod ,0
GR

, resp. γmod ,0
G′
R

(where γ = 1⊗ γRφ ); hence

at(D/) ' γmod ,0
G′
R
◦ (·)− (·) ◦ γmod ,0

GR

But this is null-homotopic, where the homotopy is given by a natural
element γmod ,1 : hom0(GR ,G

′
R)→ hom0(GR ,G

′
R).
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Let C ∗ be a complex of AR -modules and endow each C i with a connection
along DAR

. Let D/ denote this pre-connection. As before,
at(D/) := d(D/) = d ◦ D/ − D/ ◦ d .

Lemma

Assume at(D/) = d(h) = d ◦ h − h ◦ d for h ∈ hom0(C ∗,C ∗). Then, h can
be used to correct D/ so that D/ becomes a chain map.

In particular, hom·(GR ,G
′
R) is a complex of AR -modules with connections

and the collection of connections form a chain map.

Corollary

Hom(GR ,G
′
R) = H0(hom·(GR ,G

′
R)) is a finitely generated AR -module with

a connection.
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Remark

The special choice γmod ,1 of null-homotopy makes sure that compositions
such as

Hom(G′R ,GR)⊗AR
Hom(GR ,G

′
R)→ Hom(GR ,GR)

are also compatible with the induced connections.
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Before proceeding the proof of uniqueness, let us make a remark about
Hom(GR ,G

′
R)|t=1. As expected, it is isomorphic to Hom(GR |t=1,G

′
R |t=1)

but this relies on the existence of connection on the complex hom(GR ,G
′
R).

Lemma

HH0(MR
φ ,M

R
φ ) ∼= R.

Corollary

Hom(GR ,G
′
R)|t=1 = Hom(GR ,G

′
R)/(t − 1)Hom(GR ,G

′
R) ∼= R.

The rest of the proof of uniqueness depends on commutative algebra of
modules over AR = C[u, t][[q]]/(ut − q).
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Lemma

Let M be a finitely generated AR -module which carries a connection DM

along DAR
. Assume M|t=1 = M/(t − 1)M is q-torsion over

AR/(t − 1)AR = R. Then M is q-torsion.

Lemma

Let M be a finitely generated AR -module which carries a connection DM

along DAR
. Then, M is free up to q-torsion.

Corollary

Hom(GR ,G
′
R) is isomorphic to AR = C[u, t][[q]]/(ut − q) up to q-torsion.
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Consider

Hom(G′R ,GR)⊗AR
Hom(GR ,G

′
R)→ Hom(GR ,GR)

All the modules involved carry connections and Hom(G′R ,GR) etc. are
isomorphic to AR up to q-torsion. Up to q-torsion it is equivalent to

AR ⊗AR
AR → AR

and thus we can lift qN1GR
for some N. Same in the other direction.

36 / 40



Proof of the main theorem

Assume Mφ and M1A are Morita equivalent.

Claim

MR
φ is Morita equivalent to ψ∗qM

R
1A

where ψq is a transformation of R.

This holds since the only deformation of Mφ that is non-trivial in the first
order is MR

φ . For simplicity assume ψq = 1R and MR
φ is Morita equivalent

to MR
1A

.
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Claim

HH1(MR
φ ,M

R
φ ) ∼= HH1(MR

1A
,MR

1A
) ∼= R2 and the Morita equivalence can

be modified so that the natural isomorphism carries γRφ to γR1A .

MR
1A
' A⊗MR

1C
and M1C is a model for DbCoh(T0) ' DπW(T0) where

T0 is the nodal elliptic curve and T0 is the punctured torus. Hence, it has
sufficient symmetries to modify the Morita equivalence.

Remark

Heuristically, HH1(B,B) can be thought as the Lie algebra of
Auteq(twπ(B)). In our situation we have a natural copy of Z2 inside
HH1(B,B)- the coroots- and the classes above fall into these discrete
subgroups.
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The Morita equivalence gives a correspondence between families of
bimodules parametrized by Spf (AR). Moreover, the family (GR)1A
corresponds to still satisfies 1-3. Hence, it is the same as (GR)φ up to
q-torsion.

Remark

(GR)1A |u=1 is isomorphic to diagonal and (GR)φ|u=1 is isomorphic to
“fiberwise φ”.

Fiberwise φ is an auto-equivalence of MR
φ that is given by the descent of

tr−1 ⊗ 1A or 1O(T̃R)cdg ⊗ φ on O(T̃R)cdg . This implies fiberwise φ is the

same as 1A up to q-torsion.
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Pick a smooth R-point p on the deformation of nodal curve. Any
a ∈ ob(A) we have an unobstructed object “Op ⊗ a”over MR

φ and a
subcategory {Op} ⊗ A. Fiberwise φ induces 1⊗ φ on {Op} ⊗ A and it is
the same as the diagonal bimodule up to q-torsion. Hence, after inverting
q, they are the same and this easily implies φ ' 1A.
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