Dynamical invariants of categories associated to mapping tori

Yusuf Barıș Kartal

Massachusetts Institute of Technology
November 13, 2017

Overview

(1) Motivation
(2) Construction of the mapping torus categories
(3) Statement of the main theorem and the idea
(4) A family of bimodules
(5) Proof of the main theorem

Symplectic mapping torus

Let (M, ω) be a symplectic manifold and ϕ be a symplectomorphism.
Define the symplectic mapping torus as

$$
\bar{T}_{\phi}=M \times \mathbb{R} \times S^{1} /(x, t, s) \sim(\phi(x), t+1, s)
$$

It is a symplectic manifold fibered over T^{2}. Assume ϕ is not Hamiltonian.
Question: How can we distinguish \bar{T}_{ϕ} and $\bar{T}_{i d_{M}}=M \times T^{2}$?
Answer: Assume M is compact and $H^{1}(M)=0$. We can try to use an invariant called the Flux group to distinguish them.

Given a compact symplectic manifold X, flux group is a discrete subgroup $\Gamma \subset H^{1}(X ; \mathbb{R})$ which measures the aboundancy of loops/circles in the symplectomorphism group.

Applying this idea informally, $\bar{T}_{i d_{M}}=M \times T^{2}$ admits circle actions in two independent directions(hence a rank 2-lattice many of them); whereas circle action in one direction is broken for \bar{T}_{ϕ}.

This argument fails for

$$
T_{\phi}=M \times\left(\mathbb{R} \times S^{1} \backslash \mathbb{Z} \times 1\right) /(x, t, s) \sim(\phi(x), t+1, s)
$$

The circle action is broken on $T_{0}=T^{2} \backslash\{*\}$.

How to apply flux in this case?

- We may try to partially compactify T_{ϕ}
- Hard to characterize uniquely
- Heuristically partial compactifications correspond to deformations of the Fukaya category
- Hence, we wish to apply the idea of flux to $\mathcal{W}\left(T_{\phi}\right)$
- We propose an categorical model for the mapping torus and prove an abstract result instead

Advantage: Applies to manifolds X such that $\mathcal{W}(X) \simeq \mathcal{W}\left(T_{\phi}\right)$.
Work in progress: Have to relate the abstract categorical mapping tori to $\mathcal{W}\left(T_{\phi}\right)$.

Mapping torus categories

Let \mathcal{A} be an A_{∞} category over \mathbb{C} and ϕ be an A_{∞}-autoequivalence. Further assume
(1) \mathcal{A} is smooth, i.e. the diagonal bimodule is perfect
(2) \mathcal{A} is proper in each degree and bounded below
(3) $H H^{i}(\mathcal{A})=0$ for $i<0$ and $H H^{0}(\mathcal{A}) \cong \mathbb{C}$

Associated to this data we construct a category M_{ϕ}, the mapping torus category satisfying the properties 1-3.

Sketch of the construction

Let $\tilde{\mathscr{T}}_{0}$ denote the Tate curve. It is a chain of \mathbb{P}^{1} 's defined by gluing $\operatorname{Spec}\left(\mathbb{C}\left[X_{i}, Y_{i+1}\right] / X_{i} Y_{i+1}\right)$

Note the natural right translation automorphism $\mathfrak{t r} \curvearrowright \tilde{\mathcal{T}}_{0}$ and the \mathbb{G}_{m} action. Locally, $z \in \mathbb{G}_{m}$ acts by $X_{i} \mapsto z^{-1} X_{i}, Y_{i+1} \mapsto z Y_{i+1}$

We find a dg category $\mathcal{O}\left(\tilde{\mathcal{T}}_{0}\right)_{d g}$ such that
(1) $t w^{\pi}\left(\mathcal{O}\left(\tilde{\mathcal{T}}_{0}\right)_{d g}\right)$ is a dg enhancement for $D^{b}\left(\operatorname{Coh}_{p}\left(\tilde{\mathcal{T}}_{0}\right)\right)$, bounded derived category of coherent sheaves with a support of finite type
(2) $\mathfrak{t r}=\mathfrak{t r}_{*}$ acts strictly on $\mathcal{O}\left(\tilde{\mathfrak{T}}_{0}\right)_{d g}$
(3) The geometric \mathbb{G}_{m}-action above induces a nice action on $\mathcal{O}\left(\tilde{\mathcal{T}}_{0}\right)_{d g}$ Moreover, ob $\left(\mathcal{O}\left(\tilde{\mathcal{T}}_{0}\right)_{d g}\right)=\left\{\mathcal{O}_{C_{i}}(-1), \mathcal{O}_{C_{i}}: i \in \mathbb{Z}\right\}$.
Consider $\mathcal{O}\left(\tilde{T}_{0}\right)_{d g} \otimes \mathcal{A}$, which carries a \mathbb{Z}-action generated by $\mathfrak{t r} \otimes \phi$.

Definition

The mapping torus category is defined as $M_{\phi}:=\left(\mathcal{O}\left(\tilde{\mathcal{T}}_{0}\right)_{d g} \otimes \mathcal{A}\right) \# \mathbb{Z}$

Reminder on smash products

Given a dg category \mathcal{B} with a (nice) action of the discrete group G, we can construct a category $\mathcal{B} \# G$ such that
(1) $o b(\mathcal{B} \# G)=o b(\mathcal{B})$
(2) $(\mathcal{B} \# G)\left(b, b^{\prime}\right)=\bigoplus_{g \in G} \mathcal{B}\left(g . b, b^{\prime}\right)$. Let $f \in \mathcal{B}\left(g \cdot b, b^{\prime}\right)$ be denoted by $f \otimes g$
(3) $(f \otimes g) \cdot\left(f^{\prime} \otimes g^{\prime}\right)=f g\left(f^{\prime}\right) \otimes g g^{\prime}$

Morally, if \mathcal{B} has geometric origin this gives a category associated to quotient by G.

Remark

The \mathbb{G}_{m}-action on $\mathcal{O}\left(\tilde{\mathcal{T}}_{0}\right)_{d g}$ induces a \mathbb{G}_{m}-action on M_{ϕ}.

Statement of the main theorem

We are now ready to state the main theorem:

Main theorem

Assume further $H H^{1}(\mathcal{A})=H H^{2}(\mathcal{A})=0$. If M_{ϕ} and $M_{1_{\mathcal{A}}}$ are Morita equivalent then $\phi \simeq 1_{\mathcal{A}}$.

Reminder on Morita equivalences

Given two A_{∞}-categories \mathcal{B}_{1} and \mathcal{B}_{2}, we call them Morita equivalent if there is a \mathcal{B}_{1} - \mathcal{B}_{2}-bimodule E and a \mathcal{B}_{2} - \mathcal{B}_{1}-bimodule E^{\prime} such that $E \stackrel{L}{\otimes} \mathcal{B}_{2} E^{\prime} \simeq \mathcal{B}_{1}$ and $E^{\prime} \stackrel{L}{\otimes}_{\mathcal{B}_{1}} E \simeq \mathcal{B}_{2}$. By Toen's work they are Morita equivalent if and only if $t w^{\pi}\left(\mathcal{B}_{1}\right)$ and $t w^{\pi}\left(\mathcal{B}_{2}\right)$ are A_{∞}-equivalent.

Algebro-geometric analogue

Given a variety X and automorphism $\phi_{0} \curvearrowright X$ construct

$$
\begin{gathered}
M_{\phi_{0}}^{A G}=\tilde{\mathcal{T}}_{0} \times X /(t, x) \sim\left(\mathfrak{t r}(t), \phi_{0}(x)\right) \cong \\
\mathbb{P}^{1} \times X /(0, x) \sim\left(\infty, \phi_{0}(x)\right)
\end{gathered}
$$

Remark

We expect $D^{b}\left(\operatorname{Coh}\left(M_{\phi_{0}}^{A G}\right)\right) \simeq H^{0}\left(t w^{\pi}\left(M_{\phi}\right)\right)$ for $\phi=\left(\phi_{0}\right)_{*}$.

Before we sketch the proof of the main theorem let us give the basic idea on $M_{\phi_{0}}^{A G} . M_{\phi_{0}}^{A G}$ is fibered over \mathcal{T}_{0}, the nodal elliptic curve and it has a natural deformation over $\operatorname{Spf}(R)=\operatorname{Spf}(\mathbb{C}[[q]])$

Here \mathcal{T}_{R} denotes the Tate family, a natural smoothing of the nodal elliptic curve. One way to define the deformation $M_{\phi_{0}}^{A G, R}$ is to use the formal smoothing $\tilde{\mathfrak{T}}_{R}$ of $\tilde{\mathfrak{T}}_{0}$ locally given by $\operatorname{Spf}\left(\mathbb{C}\left[X_{i}, Y_{i+1}\right][[q]] /\left(X_{i} Y_{i+1}-q\right)\right)$

Then $M_{\phi_{0}}^{A G}:=\tilde{\mathfrak{T}}_{R} \times X /(t, x) \sim\left(\mathfrak{t r}(t), \phi_{0}(x)\right)$

Geometric idea

(1) Pass to generic fiber $M_{\phi_{0}}^{A G, K}$ of $M_{\phi_{0}}^{A G, R}$ to obtain an analytic mapping torus over $K=\mathbb{C}((q))$
(2) There is an action of the generic fiber \mathcal{T}_{K} of \mathcal{T}_{R} on $M_{1_{X}}^{A G, K}=\mathcal{T}_{K} \times X($ in a specific direction $)$
(3) This action is broken on $M_{\phi_{0}}^{A G, K}$ unless $\phi_{0}=1_{X}$

Notice the same idea can be phrased in terms of $\mathbb{G}_{m, K}^{a n}$-action on $M_{\phi_{0}}^{A G, K}$ which restricts to fiberwise action of ϕ_{0} at $t=q$. This is essentially a flow line along a given direction. We will apply a categorical version of this idea, but instead of using generic fibers we will prove results up to q-torsion. Instead of flow lines, we will use family of "endo-functors" or bimodules parametrized by a formal scheme whose generic fiber gives $\mathbb{G}_{m, K}^{a n}$, namely $\tilde{\mathscr{T}}_{R}$.

- Need a categorical analogue of $M_{\phi_{0}}^{A G, R}$
- Deform $\mathcal{O}\left(\tilde{\mathcal{T}}_{0}\right)_{d g}$ to obtain a curved dg category $\mathcal{O}\left(\tilde{\mathcal{T}}_{R}\right)_{c d g}$ over $R=\mathbb{C}[[q]]$ with action of $\mathfrak{t r}$
- Let $M_{\phi}^{R}:=\left(\mathcal{O}\left(\tilde{\mathcal{T}}_{R}\right)_{c d g} \otimes \mathcal{A}\right) \# \mathbb{Z}$
- We construct a family of endo-functors/bimodules of M_{ϕ}^{R} parametrized by $\operatorname{Spf}(\mathbb{C}[u, t][[q]] /(u t-q)) \hookrightarrow \tilde{\mathfrak{T}}_{R}$
- First define it for $\mathcal{O}\left(\tilde{\mathcal{T}}_{R}\right)_{c d g}$ by utilizing a "graph" in $\mathcal{G}_{R} \subset \tilde{\mathfrak{T}}_{R} \times \tilde{\mathcal{T}}_{R} \times \operatorname{Spf}\left(A_{R}\right)$
- In local coordinates, \mathcal{G}_{R} is given by

$$
\begin{gathered}
t Y_{i+1}=Y_{i+1}^{\prime}, t X_{i}^{\prime}=X_{i}, Y_{i+1} X_{i}^{\prime}=u \text { or } \\
Y_{i+1}=u Y_{i}^{\prime}, X_{i-1}^{\prime}=u X_{i}, Y_{i}^{\prime} X_{i}=t
\end{gathered}
$$

- This graph naturally extends to $\tilde{\mathcal{T}}_{R} \times \tilde{\mathcal{T}}_{R} \times \tilde{\mathcal{T}}_{R}$ and in the generic fiber we expect the graph of $\mathbb{G}_{m, K}^{a n} \times \mathbb{G}_{m, K}^{a n} \rightarrow \mathbb{G}_{m, K}^{a n}$ sending $\left(z_{1}, z_{2}\right) \mapsto z_{1}^{-1} z_{2}$

A picture of $\left.\mathcal{G}_{R}\right|_{q=0}$

Imagine the part of $\left.\mathcal{G}_{R}\right|_{q=0}$ on t-axis as degeneration of the action and the part on the u-axis as the degeneration of the inverse action composed with backwards translation.

$\left.\mathcal{G}_{R}\right|_{t=1}=\left.\Delta_{\tilde{\mathcal{T}}_{R}} \mathcal{G}_{R}\right|_{u=1}=\operatorname{graph}\left(\mathfrak{t r}^{-1}\right)$

The family of bimodules on M_{ϕ}^{R}

- First define an A_{R}-valued bimodule on $\mathcal{O}\left(\tilde{\mathcal{T}}_{R}\right)_{c d g}$ by " $\left(\mathcal{F}, \mathcal{F}^{\prime}\right) \mapsto \operatorname{hom}_{\tilde{\mathcal{T}}_{R} \times \tilde{\mathfrak{T}}_{R}}\left(q^{*} \mathcal{F}, p^{*} \mathcal{F}^{\prime} \otimes \mathcal{G}_{R}\right)$ "
- Then descent to $M_{\phi}^{R}=\left(\mathcal{O}\left(\tilde{\mathcal{T}}_{R}\right)_{c d g} \otimes \mathcal{A}\right) \# \mathbb{Z}$

We obtain an A_{R}-valued bimodule \mathcal{G}_{R}; hence, a module over $M_{\phi}^{R} \otimes\left(M_{\phi}^{R}\right)^{o p} \otimes A_{R}$.

We prove \mathcal{G}_{R} is a family of M_{ϕ}^{R}-bimodules(parametrized by $\operatorname{Spf}\left(A_{R}\right)$) satisfying
(1) $\left.\mathcal{G}_{R}\right|_{q=0}$ can be represented by a twisted complex over $M_{\phi} \otimes M_{\phi}^{o p} \otimes \mathbb{C}[u, t] /(u t)$.
(2) The restriction $\left.\mathcal{G}_{R}\right|_{t=1}$ is isomorphic to diagonal bimodule of M_{ϕ}^{R}
(3) \mathcal{G}_{R} follows the class $1 \otimes \gamma_{\phi}^{R} \in H H^{1}\left(M_{\phi}^{R} \otimes M_{\phi}^{R, o p}, M_{\phi}^{R} \otimes M_{\phi}^{R, o p}\right)$ along the direction $t \partial_{t}-u \partial_{u}$
Here γ_{ϕ}^{R} is a distinguished class in $H H^{1}\left(M_{\phi}^{R}, M_{\phi}^{R}\right)$. We will explain the terms "family" and "follows". We show the properties 1-3 uniquely characterize the family \mathcal{G}_{R} up to q-torsion.

Briefly families of (bi)modules

Given an A_{∞}-category \mathcal{B} and a affine variety/formal scheme S, we can define a family of (bi)modules parametrized by S to be an $\left(A_{\infty}\right)$-(bi)module \mathfrak{M} over \mathcal{B} which carries the structure of a (graded)free $\mathcal{O}(S)$-module such that the \mathcal{B}-(bi)module maps are $\mathcal{O}(S)$-linear. Define a morphism of families to be an $A_{\infty} \mathcal{B}$-(bi)module homomorphism that is $\mathcal{O}(S)$-linear.

We wish to measure the "rate of change" of the family along a derivation D_{S} on $\mathcal{O}(S)$.
For simplicity consider only families of right modules. Let \mathfrak{M} be a family of right modules. Define a pre-connection D along D_{S} on \mathfrak{M} to be a collection of maps

$$
\begin{aligned}
& D^{1}: \mathfrak{M}\left(b_{0}\right) \rightarrow \mathfrak{M}\left(b_{0}\right) \\
& D^{2}: \mathfrak{M}\left(b_{1}\right) \otimes \mathcal{B}\left(b_{0}, b_{1}\right) \rightarrow \mathfrak{M}\left(b_{0}\right)[-1]
\end{aligned}
$$

such that D^{i} is $\mathcal{O}(S)$-linear for $i \geq 2$ and D^{1} satisfies the Leibniz rule with respect to D_{S}, i.e. $D^{1}(f s)=f D^{1}(s)+D_{S}(f) s$.
D can be thought as an A_{∞}-pre-module map and its differential, denoted by $\operatorname{def}(D)$ gives a class

$$
\operatorname{def}(D) \in \operatorname{hom}_{\mathcal{B}_{\mathcal{O}(S)}^{\text {mod }}}^{1}(\mathfrak{M}, \mathfrak{M})
$$

where $\mathcal{B}_{\mathcal{O}(S)}^{\text {mod }}$ is the category of families of right \mathcal{B}-modules parametrized by S. In particular, it is closed and $\mathcal{O}(S)$-linear and the cohomology class $[\operatorname{def}(D)]$ is independent of the choice of pre-connection D. Denote it by $\operatorname{Def}(\mathfrak{M})$.

Let $\gamma \in C C^{1}(\mathcal{B}, \mathcal{B})$. It induces an endomorphism of degree 1 on every \mathcal{B}-module and in particular a cochain

$$
\gamma_{\mathfrak{M}}^{\text {mod }, 0} \in \operatorname{hom}_{\mathcal{B}}^{\mathcal{O}(S)} 11 \text { m, }(\mathfrak{M})
$$

If γ is closed and $\left[\gamma_{\mathfrak{M}}^{\bmod , 0}\right]=\operatorname{Def}(\mathfrak{M})$ we say \mathfrak{M} follows γ.

Let $\mathcal{O}(S)=A_{R}:=\mathbb{C}[u, t][[q]] /(u t-q)$ and $D_{A_{R}}:=t \partial_{t}-u \partial_{u}$. This derivation can be seen as the infinitesimal action of $z \partial_{z} \in \operatorname{Lie}\left(\mathbb{G}_{m}\right)$, where $z \in \mathbb{G}_{m}$ acts by $t \mapsto z t, u \mapsto z^{-1} u$.

Assume there is a (nice) \mathbb{G}_{m}-action on \mathcal{B}. Then again $z \partial_{z} \in \operatorname{Lie}\left(\mathbb{G}_{m}\right)$ induces a class $\left(z \partial_{z}\right)^{\#} \in H H^{1}(\mathcal{B}, \mathcal{B})$, the infinitesimal action.

Lemma

Assume a family \mathfrak{M} carries a (nice) \mathbb{G}_{m}-equivariant structure. Then \mathfrak{M} admits a natural pre-connection and follows the class $\left[\left(z \partial_{z}\right)^{\#}\right]$.

The graph $\mathcal{G}_{R} \subset \tilde{\mathcal{T}}_{R} \times \tilde{\mathcal{T}}_{R} \times \operatorname{Spf}\left(A_{R}\right)$, which is locally given by

$$
\begin{gathered}
t Y_{i+1}=Y_{i+1}^{\prime}, t X_{i}^{\prime}=X_{i}, Y_{i+1} X_{i}^{\prime}=u \text { or } \\
Y_{i+1}=u Y_{i}^{\prime}, X_{i-1}^{\prime}=u X_{i}, Y_{i}^{\prime} X_{i}=t
\end{gathered}
$$

is \mathbb{G}_{m}-invariant, where \mathbb{G}_{m} acts by $z: t \mapsto z t, u \mapsto z^{-1} u$ and $z: X_{i}^{\prime} \mapsto z^{-1} X_{i}^{\prime}, Y_{i+1}^{\prime} \mapsto z Y_{i+1}^{\prime}$ (i.e. trivially in the first component and as before in the second and third components).
Let $\gamma_{\phi}^{R}=\left(z \partial_{z}\right)^{\#}$:

Corollary

\mathcal{G}_{R} follows the class $1 \otimes \gamma_{\phi}^{R}$.

Uniqueness of the family

Proposition

Let \mathcal{G}_{R}^{\prime} be another family of bimodules satisfying 1-3. Then, there exists morphisms $f: \mathcal{G}_{R} \rightarrow \mathcal{G}_{R}^{\prime}$ and $g: \mathcal{G}_{R}^{\prime} \rightarrow \mathcal{G}_{R}$ in the category $H^{0}\left(\left(M_{\phi}^{R}\right)_{A_{R}}^{b i m o d}\right)$ - the homotopy category of families of bimodules- such that $f \circ g=q^{N} 1_{\mathcal{G}_{R}^{\prime}}, g \circ f=q^{N} 1_{\mathcal{G}_{R}}$ for some N.

Hence, the family \mathcal{G}_{R} is characterized by $1-3$ up to q-torsion.

Proof of the uniqueness

Consider the chain complex $\operatorname{hom}_{\left(M_{\phi}^{R}\right)_{A_{R}}^{\text {bimod }}}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right)=\operatorname{hom}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right)$. It is a complex of flat A_{R}-modules and its cohomology is finitely generated over A_{R} in each degree(thanks to Property 1). This complex carries a connection along $D_{A_{R}}$ in each degree given by

$$
" D_{\mathcal{S}_{R}^{\prime}} \circ(\cdot)-(\cdot) \circ \bigsqcup_{\mathcal{G}_{R}} "
$$

Call such a collection of connections a pre-connection on the complex and denote it by D.

The class of $a t(D):=d \circ \square-D \circ d$ is given by

$$
\operatorname{def}\left(D_{\mathcal{G}_{R}^{\prime}}\right) \circ(\cdot)-(\cdot) \circ \operatorname{def}\left(\mathbb{D}_{\mathcal{G}_{R}}\right)
$$

By Assumption 2 on families, $\operatorname{def}\left(D_{\mathcal{G}_{R}}\right)$, resp. $\operatorname{def}\left(D_{\mathcal{G}_{R}^{\prime}}\right)$ is cohomologous to $\gamma_{\mathcal{G}_{R}}^{m o d, 0}$, resp. $\gamma_{\mathcal{G}_{R}^{\prime}}^{m o d, 0}\left(\right.$ where $\left.\gamma=1 \otimes \gamma_{\phi}^{R}\right)$; hence

$$
a t(D) \simeq \gamma_{\mathcal{G}_{R}^{\prime}}^{\bmod , 0} \circ(\cdot)-(\cdot) \circ \gamma_{\mathcal{G}_{R}}^{\bmod , 0}
$$

But this is null-homotopic, where the homotopy is given by a natural element $\gamma^{\text {mod, } 1}: \operatorname{hom}^{0}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right) \rightarrow \operatorname{hom}^{0}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right)$.

Let C^{*} be a complex of $A_{R^{-}}$modules and endow each C^{i} with a connection along $D_{A_{R}}$. Let D denote this pre-connection. As before,
$a t(\mathbb{D}):=d(\mathbb{D})=d \circ \square D-\mathbb{D} \circ d$.

Lemma

Assume $\operatorname{at}(\mathbb{D})=d(h)=d \circ h-h \circ d$ for $h \in \operatorname{hom}^{0}\left(C^{*}, C^{*}\right)$. Then, h can be used to correct D so that D becomes a chain map.

In particular, hom $\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right)$ is a complex of A_{R}-modules with connections and the collection of connections form a chain map.

Corollary

$\operatorname{Hom}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right)=H^{0}\left(\operatorname{hom}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right)\right)$ is a finitely generated A_{R}-module with a connection.

Remark

The special choice $\gamma^{\text {mod, } 1}$ of null-homotopy makes sure that compositions such as

$$
\operatorname{Hom}\left(\mathcal{G}_{R}^{\prime}, \mathcal{G}_{R}\right) \otimes_{A_{R}} \operatorname{Hom}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right) \rightarrow \operatorname{Hom}\left(\mathcal{G}_{R}, \mathcal{G}_{R}\right)
$$

are also compatible with the induced connections.

Before proceeding the proof of uniqueness, let us make a remark about $\left.\operatorname{Hom}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right)\right|_{t=1}$. As expected, it is isomorphic to $\operatorname{Hom}\left(\left.\mathcal{G}_{R}\right|_{t=1},\left.\mathcal{G}_{R}^{\prime}\right|_{t=1}\right)$ but this relies on the existence of connection on the complex $\operatorname{hom}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right)$.

Lemma

$H H^{0}\left(M_{\phi}^{R}, M_{\phi}^{R}\right) \cong R$.

Corollary
 $\left.\operatorname{Hom}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right)\right|_{t=1}=\operatorname{Hom}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right) /(t-1) \operatorname{Hom}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right) \cong R$.

The rest of the proof of uniqueness depends on commutative algebra of modules over $A_{R}=\mathbb{C}[u, t][[q]] /(u t-q)$.

Lemma

Let M be a finitely generated A_{R}-module which carries a connection D_{M} along $D_{A_{R}}$. Assume $\left.M\right|_{t=1}=M /(t-1) M$ is q-torsion over $A_{R} /(t-1) A_{R}=R$. Then M is q-torsion.

Lemma

Let M be a finitely generated A_{R}-module which carries a connection D_{M} along $D_{A_{R}}$. Then, M is free up to q-torsion.

Corollary

$\operatorname{Hom}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right)$ is isomorphic to $A_{R}=\mathbb{C}[u, t][[q]] /(u t-q)$ up to q-torsion.

Consider

$$
\operatorname{Hom}\left(\mathcal{G}_{R}^{\prime}, \mathcal{G}_{R}\right) \otimes_{A_{R}} \operatorname{Hom}\left(\mathcal{G}_{R}, \mathcal{G}_{R}^{\prime}\right) \rightarrow \operatorname{Hom}\left(\mathcal{G}_{R}, \mathcal{G}_{R}\right)
$$

All the modules involved carry connections and $\operatorname{Hom}\left(\mathcal{G}_{R}^{\prime}, \mathcal{G}_{R}\right)$ etc. are isomorphic to A_{R} up to q-torsion. Up to q-torsion it is equivalent to

$$
A_{R} \otimes_{A_{R}} A_{R} \rightarrow A_{R}
$$

and thus we can lift $q^{N} 1_{\mathcal{G}_{R}}$ for some N. Same in the other direction.

Proof of the main theorem

Assume M_{ϕ} and $M_{1_{\mathcal{A}}}$ are Morita equivalent.

Claim

M_{ϕ}^{R} is Morita equivalent to $\psi_{q}^{*} M_{1_{\mathcal{A}}}^{R}$ where ψ_{q} is a transformation of R.
This holds since the only deformation of M_{ϕ} that is non-trivial in the first order is M_{ϕ}^{R}. For simplicity assume $\psi_{q}=1_{R}$ and M_{ϕ}^{R} is Morita equivalent to $M_{1_{\mathcal{A}}}^{R}$.

Claim

$H H^{1}\left(M_{\phi}^{R}, M_{\phi}^{R}\right) \cong H H^{1}\left(M_{1_{\mathcal{A}}}^{R}, M_{1_{\mathcal{A}}}^{R}\right) \cong R^{2}$ and the Morita equivalence can be modified so that the natural isomorphism carries γ_{ϕ}^{R} to $\gamma_{1_{\mathcal{A}}}^{R}$.
$M_{1_{\mathcal{A}}}^{R} \simeq \mathcal{A} \otimes M_{1_{\mathbb{C}}}^{R}$ and $M_{1_{\mathbb{C}}}$ is a model for $D^{b} \operatorname{Coh}\left(\mathcal{T}_{0}\right) \simeq D^{\pi} \mathcal{W}\left(T_{0}\right)$ where \mathcal{T}_{0} is the nodal elliptic curve and T_{0} is the punctured torus. Hence, it has sufficient symmetries to modify the Morita equivalence.

Remark

Heuristically, $H H^{1}(\mathcal{B}, \mathcal{B})$ can be thought as the Lie algebra of Auteq $\left(t w^{\pi}(\mathcal{B})\right)$. In our situation we have a natural copy of \mathbb{Z}^{2} inside $H H^{1}(\mathcal{B}, \mathcal{B})$ - the coroots- and the classes above fall into these discrete subgroups.

The Morita equivalence gives a correspondence between families of bimodules parametrized by $\operatorname{Spf}\left(A_{R}\right)$. Moreover, the family $\left(\mathcal{G}_{R}\right)_{1_{\mathcal{A}}}$ corresponds to still satisfies $1-3$. Hence, it is the same as $\left(\mathcal{G}_{R}\right)_{\phi}$ up to q-torsion.

Remark

$\left.\left(\mathcal{G}_{R}\right)_{1_{\mathcal{A}}}\right|_{u=1}$ is isomorphic to diagonal and $\left.\left(\mathcal{G}_{R}\right)_{\phi}\right|_{u=1}$ is isomorphic to "fiberwise ϕ ".

Fiberwise ϕ is an auto-equivalence of M_{ϕ}^{R} that is given by the descent of $\mathfrak{t r}^{-1} \otimes 1_{\mathcal{A}}$ or $1_{\mathcal{O}\left(\tilde{\tau}_{R}\right)_{c d g}} \otimes \phi$ on $\mathcal{O}\left(\tilde{\mathcal{T}}_{R}\right)_{c d g}$. This implies fiberwise ϕ is the same as $1_{\mathcal{A}}$ up to q-torsion.

Pick a smooth R-point p on the deformation of nodal curve. Any $a \in o b(\mathcal{A})$ we have an unobstructed object " $\mathcal{O}_{p} \otimes a$ " over M_{ϕ}^{R} and a subcategory $\left\{\mathcal{O}_{p}\right\} \otimes \mathcal{A}$. Fiberwise ϕ induces $1 \otimes \phi$ on $\left\{\mathcal{O}_{p}\right\} \otimes \mathcal{A}$ and it is the same as the diagonal bimodule up to q-torsion. Hence, after inverting q, they are the same and this easily implies $\phi \simeq 1_{\mathcal{A}}$.

